6 research outputs found

    Modelado, estudio y validación experimental de la influencia de los parámetros internos en el rendimiento de sistemas de almacenamiento de energía basados en baterías. Aplicación al caso del Departamento del Chocó (Colombia)

    Full text link
    [ES] El almacenamiento de energía se ha convertido en un componente fundamental en los sistemas de energía renovable, especialmente aquellos que incluyen baterías. De allí, la necesidad de buscar métodos de control eficientes que ayuden a proteger y prolongar la vida útil de la batería. Dentro de los métodos de control reportados en la literatura, el más utilizado es el de corriente constante - voltaje constante. Otros métodos como el control con lógica difusa o el modelo de control predictivo han demostrado ser más eficientes que los métodos tradicionales, ya que reducen el tiempo de carga, mitigan el aumento de la temperatura y mantienen el estado de carga dentro de los límites seguros. Sin embargo, en los procesos de carga y descarga, algunos de los parámetros no están controlados por el usuario de la batería, convirtiéndose ésta en una de las causas que provoca el envejecimiento de las baterías, una reducción del ciclo de vida y, por ende, un reemplazo prematuro de la batería. En esta tesis doctoral, se usa el modelo de batería propuesto por Copetti para simular el voltaje de carga y descarga de un banco de baterías de plomo-ácido e identificar aquellos parámetros que afectan el rendimiento de la batería. El modelo se valida sobre medidas reales tomadas de un sistema de almacenamiento de energías basado en baterías instalado en el Laboratorio de Energías Renovables (LadER) ubicado en el departamento del Chocó, Colombia. Para ajustar el modelo e identificar los parámetros internos del banco de baterías se implementan y se comparan tres algoritmos evolutivos: optimización por enjambre de partículas - PSO, búsqueda de cuco - CS y optimización por enjambre de partículas+perturbación - PSO+P. Siendo este último una nueva propuesta en la que se introduce una perturbación periódica en la población para evitar que el algoritmo caiga en mínimos locales. La perturbación consiste en una nueva población basada en la mejor solución global que permita la reactivación del algoritmo PSO. Los parámetros internos que están asociados a la capacidad de la batería son usados para estimar el estado de salud del sistema de almacenamiento de energía en baterías, encontrándose que éste perdió un 5% de su capacidad nominal, por lo que su estado de salud se estima en un 95%. Adicionalmente, el uso de análisis de componentes principales (PCA) es propuesto para realizar un diagnóstico del sistema. El modelo de análisis de componentes principales se aplica a un conjunto de parámetros asociados a la capacidad, resistencia interna y voltaje de circuito abierto de un sistema de almacenamiento de energía en baterías. El modelo PCA conserva las 5 primeras componentes que recolectan el 80.25% de la variabilidad total. Durante la prueba en condiciones de operación real, el modelo PCA, diagnosticó una degradación del estado de salud más rápido que el controlador de batería comercial. Sin embargo, un cambio en los modos de carga, llevó a una recuperación de la batería que también fue monitoreada por el algoritmo propuesto. Finalmente, se proponen acciones de control que llevan al sistema de almacenamiento de energía en baterías a funcionar en condiciones normales.[CA] l'emmagatzematge d'energia s'ha convertit en un component fonamental en els sistemes d'energia renovable, especialment aquells que inclouen bateries. D'allí, la necessitat de buscar mètodes de control eficients que ajudin a protegir i allargar la vida útil de la bateria. Dins dels mètodes de control reportats en la literatura, el més utilitzat és el de corrent constant - voltatge constant. Altres mètodes com el control amb lògica difusa o el model de control predictiu han demostrat ser més eficients que els mètodes tradicionals, ja que redueixen el temps de càrrega, mitiguen l'augment de la temperatura i mantenen l'estat de càrrega dins dels límits segurs. No obstant això, en els processos de càrrega i descàrrega, alguns dels paràmetres no estan controlats per l'usuari de la bateria, convertint-se aquesta en una de les causes que provoca l'envelliment de les bateries, una reducció del cicle de vida i, per tant, un reemplaçament prematur de la bateria. En aquesta tesi doctoral, s'usa el model de bateria proposat per Copetti per simular el voltatge de càrrega i descàrrega d'un banc de bateries de plom-àcid i identificar aquells paràmetres que afecten el rendiment de la bateria. El model es valida sobre mesures reals preses d'un sistema d'emmagatzematge d'energies en bateries instal·lat al Laboratori d'Energies Renovables (líder) situat en el departament del Chocó, Colòmbia. Per ajustar el model i identificar els paràmetres interns del banc de bateries s'implementen i es comparen tres algorismes evolutius: optimització per eixam de partícules - PSO, recerca de cucut - CS i optimització per eixam de partícules + pertorbació - PSO + P. Sent aquest últim una nova proposta en la qual s'introdueix una pertorbació periòdica en la població per evitar que l'algoritme caigui en mínims locals. La pertorbació consisteix en una nova població basada en la millor solució global que permeti la reactivació de l'algoritme PSO. Els paràmetres interns que estan associats a la capacitat de la bateria són usats per estimar l'estat de salut del sistema d'emmagatzematge d'energia en bateries, trobant-se que aquest va perdre un 5% de la seva capacitat nominal, de manera que el seu estat de salut s'estima en un 95%. Addicionalment, l'ús d'anàlisi de components principals (PCA) és proposat per realitzar un diagnòstic del sistema. El model d'anàlisi de components principals s'aplica a un conjunt de paràmetres associats a la capacitat, resistència interna i voltatge de circuit obert d'un sistema d'emmagatzematge d'energia en bateries. El model PCA conserva les 5 primeres components que recullen el 80.25% de la variabilitat total. Durant la prova en condicions d'operació real, el model PCA, va diagnosticar una degradació de l'estat de salut més ràpid que el controlador de bateria comercial. No obstant això, un canvi en les maneres de càrrega, va portar a una recuperació de la bateria que també va ser monitoritzada per l'algoritme proposat. Finalment, es proposen accions de control que porten al sistema d'emmagatzematge d'energia en bateries a funcionar en condicions normals.[EN] Energy storage has become a fundamental component in renewable energy systems, especially those that include batteries. Hence, the need to look for efficient controls methods, which help to protect and prolong the battery life expectancy. Among the control methods reported in the literature, the most used is the constant current - constant voltage. Other methods such as fuzzy logic control or the model predictive control have proven to be more efficient than traditional methods, since they reduce the charging time, mitigate the increase in temperature and maintain the state of charge within the system the safe limits. However, in the charging and discharging processes, some of the parameters are not controlled by the user of the battery, this being one of the causes that leads to the aging batteries, a reduction in the life cycle, and therefore, a premature replacement of the battery. Therefore, in this doctoral thesis, the battery model proposed by Copetti is used to simulate the charge and discharge voltage of a battery of lead-acid batteries and identify those parameters that affect battery performance. The model is validated on real measurements, taken from a battery energy storage system installed in the Renewable Energy Laboratory (LadER) located in the department of Chocó, Colombia. To fitting the model and identify the internal parameters of the battery bank, three evolutionary algorithms are implemented and compared (particle swarm optimization - PSO, cuckoo search - CS and particle swarm optimization + perturbance - PSO + P), where PSO + P is a new proposal, in which a periodic perturbance is introduced in the population, to avoid that the algorithm falls at local minimums. The perturbance consists of a new population based on the best global solution that allows the reactivation of the PSO algorithm. The internal parameters that are associated with the battery capacity are used to estimate the state of health of the battery energy storage system, found that it lost 5% of its nominal capacity, so that its state of health estimated at 95%. Additionally, the use of principal component analysis (PCA) is proposed to perform a system diagnosis. The principal component analysis model is applied on parameters set associated with the capacity, internal resistance and open circuit voltage of a battery energy storage system. The PCA model conserves the first 5 components, which collect 80.25% of the total variability. During the test under real operating conditions, the PCA model diagnosed a state of health degradation faster than the commercial battery controller. However, a change in charging modes led to a recovery of the battery that was also monitored by the proposed algorithm. Finally, control actions are proposed that lead to the battery energy storage system to operate under normal conditions.Al proyecto “Implementación de un programa de desarrollo e investigación de energías renovables en el departamento del Chocó”—BPIN: 20130000100285; COLCIENCIAS (Departamento Administrativo de Ciencia, Tecnología e Innovación de Colombia) y a la Universidad Tecnológica del Chocó “Diego Luis Córdoba” por el apoyo financiero recibido durante todo este proceso, para que este trabajo de tesis llegará a buen puerto.Banguero Palacios, E. (2020). Modelado, estudio y validación experimental de la influencia de los parámetros internos en el rendimiento de sistemas de almacenamiento de energía basados en baterías. Aplicación al caso del Departamento del Chocó (Colombia) [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/138754TESI

    Diagnosis of a battery energy storage system based on principal component analysis

    Full text link
    [EN] This paper proposes the use of principal component analysis (PCA) for the state of health (SOH) diagnosis of a battery energy storage system (BESS) that is operating in a renewable energy laboratory located in Chocó, Colombia. The presented methodology allows the detection of false alarms during the operation of the BESS. The principal component analysis model is applied to a parameter set associated to the capacity, internal resistance and open circuit voltage of a battery energy storage system. The parameters are identified from experimental data collected daily. The PCA model retains the first 5 components that collect 80.25% of the total variability. During the test under real operation contidions, PCA diagnosed a degradation of state of health fastest than the comercial battery controller. A change in the charging modes lead to a battery recovery that was also monitored by the proposed algortihm, and control actions are proposed that lead the BESS to work in normal conditions.The authors would like to acknowledge the research project "Implementacion de un programa de desarrollo e investigacion de energias renovables en el departamento del Choco, BPIN 2013000100285 (in Spanish)" and the Universidad TecnolOgica del Choco (in Spanish). The authors would like to thank the anonymous reviewers as well as the editor for their valuable comments that have greatly improved the final version of the paper.Banguero-Palacios, E.; Correcher Salvador, A.; Pérez-Navarro Gómez, Á.; García Moreno, E.; Aristizabal, A. (2020). Diagnosis of a battery energy storage system based on principal component analysis. Renewable Energy. 146:2438-2449. https://doi.org/10.1016/j.renene.2019.08.064S24382449146Perera, A. T. D., Attalage, R. A., Perera, K. K. C. K., & Dassanayake, V. P. C. (2013). Designing standalone hybrid energy systems minimizing initial investment, life cycle cost and pollutant emission. Energy, 54, 220-230. doi:10.1016/j.energy.2013.03.028Krieger, E. M., Cannarella, J., & Arnold, C. B. (2013). A comparison of lead-acid and lithium-based battery behavior and capacity fade in off-grid renewable charging applications. Energy, 60, 492-500. doi:10.1016/j.energy.2013.08.029Aksakal, C., & Sisman, A. (2018). On the Compatibility of Electric Equivalent Circuit Models for Enhanced Flooded Lead Acid Batteries Based on Electrochemical Impedance Spectroscopy. Energies, 11(1), 118. doi:10.3390/en11010118Dhundhara, S., Verma, Y. P., & Williams, A. (2018). Techno-economic analysis of the lithium-ion and lead-acid battery in microgrid systems. Energy Conversion and Management, 177, 122-142. doi:10.1016/j.enconman.2018.09.030Li, X., Shu, X., Shen, J., Xiao, R., Yan, W., & Chen, Z. (2017). An On-Board Remaining Useful Life Estimation Algorithm for Lithium-Ion Batteries of Electric Vehicles. Energies, 10(5), 691. doi:10.3390/en10050691Ariza Chacón, H., Banguero, E., Correcher, A., Pérez-Navarro, Á., & Morant, F. (2018). Modelling, Parameter Identification, and Experimental Validation of a Lead Acid Battery Bank Using Evolutionary Algorithms. Energies, 11(9), 2361. doi:10.3390/en11092361Copetti, J. B., Lorenzo, E., & Chenlo, F. (1993). A general battery model for PV system simulation. Progress in Photovoltaics: Research and Applications, 1(4), 283-292. doi:10.1002/pip.4670010405Guasch, D., & Silvestre, S. (2003). Dynamic battery model for photovoltaic applications. Progress in Photovoltaics: Research and Applications, 11(3), 193-206. doi:10.1002/pip.480Blaifi, S., Moulahoum, S., Colak, I., & Merrouche, W. (2016). An enhanced dynamic model of battery using genetic algorithm suitable for photovoltaic applications. Applied Energy, 169, 888-898. doi:10.1016/j.apenergy.2016.02.062Blaifi, S., Moulahoum, S., Colak, I., & Merrouche, W. (2017). Monitoring and enhanced dynamic modeling of battery by genetic algorithm using LabVIEW applied in photovoltaic system. Electrical Engineering, 100(2), 1021-1038. doi:10.1007/s00202-017-0567-6Gao, Z., Cecati, C., & Ding, S. X. (2015). A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part I: Fault Diagnosis With Model-Based and Signal-Based Approaches. IEEE Transactions on Industrial Electronics, 62(6), 3757-3767. doi:10.1109/tie.2015.2417501Ferrer, A. (2007). Multivariate Statistical Process Control Based on Principal Component Analysis (MSPC-PCA): Some Reflections and a Case Study in an Autobody Assembly Process. Quality Engineering, 19(4), 311-325. doi:10.1080/08982110701621304Jiang, Q., Yan, X., & Zhao, W. (2013). Fault Detection and Diagnosis in Chemical Processes Using Sensitive Principal Component Analysis. Industrial & Engineering Chemistry Research, 52(4), 1635-1644. doi:10.1021/ie3017016Fan, J., & Wang, Y. (2014). Fault detection and diagnosis of non-linear non-Gaussian dynamic processes using kernel dynamic independent component analysis. Information Sciences, 259, 369-379. doi:10.1016/j.ins.2013.06.021Garcia-Alvarez, D., Fuente, M. J., & Sainz, G. I. (2012). Fault detection and isolation in transient states using principal component analysis. Journal of Process Control, 22(3), 551-563. doi:10.1016/j.jprocont.2012.01.007Banguero, E., Aristizábal, A. J., & Murillo, W. (2017). A Verification Study for Grid-Connected 20 kW Solar PV System Operating in Chocó, Colombia. Energy Procedia, 141, 96-101. doi:10.1016/j.egypro.2017.11.019Rahman, M. A., Anwar, S., & Izadian, A. (2016). Electrochemical model parameter identification of a lithium-ion battery using particle swarm optimization method. Journal of Power Sources, 307, 86-97. doi:10.1016/j.jpowsour.2015.12.083Yang, X., Chen, L., Xu, X., Wang, W., Xu, Q., Lin, Y., & Zhou, Z. (2017). Parameter Identification of Electrochemical Model for Vehicular Lithium-Ion Battery Based on Particle Swarm Optimization. Energies, 10(11), 1811. doi:10.3390/en10111811Kai, H., Yong-Fang, G., Zhi-Gang, L., Hsiung-Cheng, L., & Ling-Ling, L. (2018). Development of Accurate Lithium-Ion Battery Model Based on Adaptive Random Disturbance PSO Algorithm. Mathematical Problems in Engineering, 2018, 1-13. doi:10.1155/2018/3793492Venter, G., & Sobieszczanski-Sobieski, J. (2003). Particle Swarm Optimization. AIAA Journal, 41(8), 1583-1589. doi:10.2514/2.2111Layadi, T. M., Champenois, G., Mostefai, M., & Abbes, D. (2015). Lifetime estimation tool of lead–acid batteries for hybrid power sources design. Simulation Modelling Practice and Theory, 54, 36-48. doi:10.1016/j.simpat.2015.03.001Rahmani, M., & Atia, G. K. (2017). Coherence Pursuit: Fast, Simple, and Robust Principal Component Analysis. IEEE Transactions on Signal Processing, 65(23), 6260-6275. doi:10.1109/tsp.2017.2749215Bro, R., & Smilde, A. K. (2014). Principal component analysis. Anal. Methods, 6(9), 2812-2831. doi:10.1039/c3ay41907jGranato, D., Santos, J. S., Escher, G. B., Ferreira, B. L., & Maggio, R. M. (2018). Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective. Trends in Food Science & Technology, 72, 83-90. doi:10.1016/j.tifs.2017.12.006Soh, W., Kim, H., & Yum, B.-J. (2015). Application of kernel principal component analysis to multi-characteristic parameter design problems. Annals of Operations Research, 263(1-2), 69-91. doi:10.1007/s10479-015-1889-2Deng, X., Tian, X., Chen, S., & Harris, C. J. (2018). Nonlinear Process Fault Diagnosis Based on Serial Principal Component Analysis. IEEE Transactions on Neural Networks and Learning Systems, 29(3), 560-572. doi:10.1109/tnnls.2016.2635111De Ketelaere, B., Hubert, M., & Schmitt, E. (2015). Overview of PCA-Based Statistical Process-Monitoring Methods for Time-Dependent, High-Dimensional Data. Journal of Quality Technology, 47(4), 318-335. doi:10.1080/00224065.2015.11918137Vanhatalo, E., Kulahci, M., & Bergquist, B. (2017). On the structure of dynamic principal component analysis used in statistical process monitoring. Chemometrics and Intelligent Laboratory Systems, 167, 1-11. doi:10.1016/j.chemolab.2017.05.016Zhao, C., Wang, F., Gao, F., Lu, N., & Jia, M. (2007). Adaptive Monitoring Method for Batch Processes Based on Phase Dissimilarity Updating with Limited Modeling Data. Industrial & Engineering Chemistry Research, 46(14), 4943-4953. doi:10.1021/ie061320fNomikos, P., & MacGregor, J. F. (1995). Multivariate SPC Charts for Monitoring Batch Processes. Technometrics, 37(1), 41-59. doi:10.1080/00401706.1995.10485888Design of Off-Grid Systems with Sunny Island 4.4M/6.0H/8.0H Devices. Version 2.3. SMA. 1-42. http://files.sma.de/dl/1353/Designing-OffGridSystem-PL-en-23.pdf [Accessed on 15.07.2018].Ungurean, L., Cârstoiu, G., Micea, M. V., & Groza, V. (2016). Battery state of health estimation: a structured review of models, methods and commercial devices. International Journal of Energy Research, 41(2), 151-181. doi:10.1002/er.359

    Modelling, Parameter Identification, and Experimental Validation of a Lead Acid Battery Bank Using Evolutionary Algorithms

    Full text link
    [EN] Accurate and efficient battery modeling is essential to maximize the performance of isolated energy systems and to extend battery lifetime. This paper proposes a battery model that represents the charging and discharging process of a lead-acid battery bank. This model is validated over real measures taken from a battery bank installed in a research center placed at "El Choco", Colombia. In order to fit the model, three optimization algorithms (particle swarm optimization, cuckoo search, and particle swarm optimization + perturbation) are implemented and compared, the last one being a new proposal. This research shows that the identified model is able to estimate real battery features, such as state of charge (SOC) and charging/discharging voltage. The comparison between simulations and real measures shows that the model is able to absorb reading problems, signal delays, and scaling errors. The approach we present can be implemented in other types of batteries, especially those used in stand-alone systems.This research was supported by "Implementacion de un programa de desarrollo e investigacion de energias renovables en el departamento del Choco"-BPIN:20130000100285; COLCIENCIAS (Administrative Department of Science, Technology and Innovation of Colombia) scholarship program PDBCEx, COLDOC 586, and the support provided by the Corporacion Universitaria Comfacauca, Popayan-Colombia.Ariza-Chacón, HE.; Banguero-Palacios, E.; Correcher Salvador, A.; Pérez-Navarro, Á.; Morant Anglada, FJ. (2018). Modelling, Parameter Identification, and Experimental Validation of a Lead Acid Battery Bank Using Evolutionary Algorithms. Energies. 11(9):1-14. https://doi.org/10.3390/en11092361S11411

    A Review on Battery Charging and Discharging Control Strategies: Application to Renewable Energy Systems

    Full text link
    [EN] Energy storage has become a fundamental component in renewable energy systems, especially those including batteries. However, in charging and discharging processes, some of the parameters are not controlled by the battery's user. That uncontrolled working leads to aging of the batteries and a reduction of their life cycle. Therefore, it causes an early replacement. Development of control methods seeks battery protection and a longer life expectancy, thus the constant-current-constant-voltage method is mostly used. However, several studies show that charging time can be reduced by using fuzzy logic control or model predictive control. Another benefit is temperature control. This paper reviews the existing control methods used to control charging and discharging processes, focusing on their impacts on battery life. Classical and modern methods are studied together in order to find the best approach to real systems.The authors would like to acknowledge the research project “Implementación de un programa de desarrollo e investigación de energías renovables en el departamento del Chocó, BPIN 2013000100285” and the Universidad Tecnológica del Chocó.Banguero-Palacios, E.; Correcher Salvador, A.; Pérez-Navarro, Á.; Morant Anglada, FJ.; Aristizabal Cardona, AJ. (2018). A Review on Battery Charging and Discharging Control Strategies: Application to Renewable Energy Systems. Energies. 11(4):1-15. https://doi.org/10.3390/en11041021S11511

    Preparation and characterization of SnS and SnS:Bi thin films deposited by sulfurization

    No full text
    Las películas delgadas de SnS y SnS:Bi se depositaron por el método de sulfurización variando los parámetros de deposición: temperatura de sustrato y relación de masa S evaporada a masa Sn evaporada (mS/mSn). Las películas se caracterizaron a través de medidas de transmitancia espectral, difracción de rayos x (DRX), microscopía de fuerza atómica (AFM) y efecto Hall. Las caracterizaciones ópticas y estructurales de las películas delgadas de SnS permitieron establecer que estas películas presentan una brecha de energía prohibida de 1.27 eV, un coeficiente de absorción del orden de 104 cm-1, crecen con estructura ortorrómbica, presentan conductividad tipo p y resistividad eléctrica entre 110 y 120 Ωcm. También se prepararon películas delgadas de SnS:Bi variando la concentración (x) de Bi entre 0x1. Se encontró que cuando el contenido de Bi aumenta, su brecha de energía prohibida aumenta desde 1.27 eV para x = 0 hasta 1.37 eV para x = 1. Las películas delgadas de SnS:Bi crecen con una mezcla de fases, las cuales incluyen el SnS, Sn2S3 y Bi2S3 ortorrómbicos, y el SnS2 hexagonal, cuando el contenido de Bi es 0x1; solamente en la fase SnS cuando x=0, y solamente en la fase Bi2S3 cuando x=1. Las películas de SnS:Bi con concentraciones altas de Bi (x0.5) presentaron resistividades eléctricas entre 300 y 7000 Ωcm en parte debido a su tamaño de grano pequeño (120 nm). / Abstract. SnS and SnS: Bi thin films were prepared by sulfurization varying the deposition parameters: substrate temperature and mass of evaporated S to evaporated mass of Sn ratio (mS / mSn). The films were characterized through spectral transmittance measurements, x-ray diffraction (XRD), force microscopy atomic (AFM) and Hall effect. It was established from optical and structural characterizations that the films SnS presents an optical gap of VII 1.27 eV, an absorption coefficient of the order of 104 cm-1, grow in the orthorhombic phase, exhibits p-type conduction and electrical resistivity between 110 and 120 Ωcm. Also were prepared SnS: Bi thin films varying the Bi concentration (x) between 0 x 1. It was found that when the Bi content increases the optical gap increases from 1.27 eV for x = 0 to 1.37 eV for x = 1. SnS:Bi thin films grow with a mixture of several phases, including the orthorhombic SnS, Sn2S3 and Bi2S3, and the hexagonal SnS2, when the Bi-content is 0x1, the films grow only in the SnS phase when x=0, and in the Bi2S3 phase when x=1. SnS:Bi thin films with high Bi concentrations (x 0.5) presented electrical resistivities between 300 and 7000 Ωcm in part due to its small grain size (120 nm).Maestría en Ciencias FísicaMaestrí
    corecore